Advanced Search

Search Form
Keyword(s):
Filter(s):
 
Display / Hide Categories
Results 1-5 of 50
Didn't find what you're looking for?
Search Canada.ca

  1. Hull Construction Regulations - C.R.C., c. 1431 (SCHEDULE I : Calculation of Maximum Length of Watertight Compartments)
    Regulations Respecting the Construction of Hulls of Steamships

    [...]

    [...]

    1 For the purposes of this Schedule, except where otherwise specified,

    • [...]

    • (e) plans of the subdivision arrangements and calculations as follows shall be submitted:

      • (i) outline profile and plans showing the margin lines (corrected as necessary); all watertight transverse and longitudinal bulkheads, decks, inner skins, shaft and other tunnels, trunks and ventilators; recesses and steps in watertight bulkheads; double bottoms, the principal openings in the watertight bulkheads and decks and openings therein closed only by portable plates, the appropriation of spaces below the bulkhead deck; the positions of equivalent plane bulkheads; the lengths of the main transverse compartments and the weathertight arrangements at the forward end; tunnels, recesses and steps shall be shown in plan and elevation and typical sections of the double bottom shall be given, and

    [...]

    3 The assumptions of permeability, which shall be taken into account in determining the floodable length at any point in ships to which this Division applies, shall be as follows:

    • (a) machinery space:

      • [...]

      • (ii) in the case of ships propelled by internal combustion engines, the average permeability throughout the machinery space shall be taken as five greater than that given by the aforesaid formula, and

      • (iii) in any case in which the average permeability throughout the machinery space, as determined by detailed calculation, is less than that given by the aforesaid formula, the calculated value may be substituted; for the purposes of such calculation, the permeability of passenger spaces and crew spaces shall be taken to be 95, that of all spaces appropriated for cargo, coal or stores shall be taken to be 60, and that of double bottom, oil fuel and other tanks forming part of the structure of the ship shall be taken to be 95 or such lesser figure as the Board may approve in the case of that ship; and

    • (b) portions before and abaft the machinery space:

      • (i) the assumed average permeability throughout the portions of the ship before and abaft the machinery space shall be determined:

        • (A) by the following formula:

          63 + 35 a / v

          where

          a 
          = volume of the passenger spaces and crew spaces which are situated below the margin line before or abaft the machinery space, as the case may be; and
          v 
          = volume of the portion of the ship below the margin line before or abaft the machinery space, as the case may be, or
        • (B) if the Board so determines in the case of any ship, after receipt of a plan of the ship showing the watertight subdivisions thereof, by detailed calculation, for the purpose of which the permeability of spaces shall be assumed to be as follows:

          [...]

          tanks forming part of the structure of the ship and double bottoms 95,

          or such lesser figure as the Board may permit in the case of any ship; and

    [...]

    • [...]

    • (2) Subject to subsection (4), in the case of ships the length of which is less than 131 m but not less than 79 m having a criterion numeral of not less than

      [...]

      (hereinafter in this section referred to as S), the factor of subdivision F shall be determined by the following formula:

      [...]

    [...]

    5 The criterion numeral for ships to which this Division applies shall be determined by the following formulae:

    [...]

    • (a) where the value of 0.056LN is greater than the sum of P and the whole volume of the passenger spaces above the margin line, the figure to be taken as P1 shall be that sum or 0.037LN whichever is the greater;

    • (b) values of Cs less than 23 shall be taken as 23; and

    • (c) values of Cs greater than 123 shall be taken as 123.

    [...]

    • 6 (1) Compartments exceeding the permissible length:

      • [...]

      • (d) where in any portion of a ship bulkheads required by these Regulations to be watertight are carried to a higher deck than in the remainder of the ship, separate margin lines may be used for calculating the floodable length of that portion of the ship, if

        • [...]

        • (ii) the sides of the ship are extended throughout the ship’s length to the deck corresponding to the uppermost margin line and all openings in the shell plating below that deck throughout the length of the ship comply with the requirements of section 19 as if they were openings below the margin line.

    [...]

    • (3) If a bulkhead required by these Regulations to be watertight is stepped, it shall comply with one of the following conditions:

      • [...]

      • (b) additional subdivision is provided in way of the step to maintain the same measure of safety as that secured by a plane bulkhead; or

    [...]

    • (6) If the distance between two adjacent bulkheads required by these Regulations to be watertight, or their equivalent plane bulkheads, or the distance between transverse planes passing through the nearest stepped portions of the bulkheads, is less than 0.03L + 3.05 m, or 10.67 m, or 0.1L, whichever is the least, only one of those bulkheads shall be regarded as forming part of the subdivision of the ship; for Class V and Class VIII vessels, this minimum spacing shall be applicable between peak bulkheads.

    [...]

    7 Subject to the modifications set forth in this Division, the maximum length of compartments in ships to which this Division applies shall be determined as if they were ships to which Division II applies.

    [...]

    8 In ships to which this Division applies, the assumed average permeability throughout the portions of the ship before and abaft the machinery space shall be determined

    • (a) by the following formula:

      95 - 35b / v

      where

      b = 
      the volume of the spaces that are situated below the margin line before or abaft the machinery space, as the case may be, and above the tops of floors, inner bottom, or peak tanks, and which are appropriated for use as coal or oil fuel bunkers, store rooms, baggage rooms, mail rooms, chain lockers or fresh water tanks and of spaces appropriated for cargo if the Board is satisfied the greater part of the volume of the space is intended to be occupied by cargo; and
      v = 
      v =the volume of the portion of the ship below the margin line before or abaft the machinery space, as the case may be; or
    • (b) if the Board so determines in the case of any ship, after receipt of a plan of the ship showing the watertight subdivision thereof, by detailed calculation, for the purpose of which the permeability of spaces shall be assumed to be as follows:

      [...]

      spaces appropriated to cargo, tanks forming part of the structure of the ship and double bottoms 95,

      or such lesser figure as the Board may permit in the case of any ship.

    [...]

    • [...]

    • (2) If in the case of any ship to which this Division applies the Board is satisfied that the quantity of cargo to be carried in the ship will be such as to render impracticable the application abaft the collision bulkhead of a factor of subdivision not exceeding 0.5, the factor of subdivision of the ship shall be determined as follows:

      [...]

    [...]

    10 In accordance with section 2 of this Schedule, the method described in this Division should generally be adopted to develop flooding curves to indicate the floodable length at any point in the ship; for the purpose of this method, the floodable length is expressed as a percentage of the length of the ship.

    [...]

    11 In this Division,

    • [...]

    • (d) the corrected margin line, if the actual margin line either forward or aft is not of ordinary parabolic formFootnote * or if its lowest point is not at amidships, a margin line of ordinary parabolic form shall be drawn with its apex amidships level with the lowest point of the actual margin line, and intersecting the latter either at a point one quarter of the ship’s length from amidships or at the perpendicular according as the actual sheer at the perpendicular is respectively greater or less than four times the actual sheer at the one-quarter length position, (see Fig. A in this Schedule);

    • [...]

    • (h) the length of the ship (L) is the length of a ship measured between the perpendiculars taken at the extremities of the deepest subdivision load water line, (section 2); no adjustment to this length will, as a general rule, be necessary unless the sectional area at the after perpendicular exceeds one tenth of the midship sectional area, in which case full particulars shall be submitted in order that an equitable length may be determined;

    • [...]

    • (k) the freeboard (f) is the vertical distance amidships from the subdivision load water line to the margin line (corrected as necessary);

    • (l) the block coefficient of fineness of displacement to the subdivision load water line shall be determined as follows: volume of displacement to moulded lines divided by (L.B.d.);

    • [...]

    • (n) the sheer ratio forward or aft is the ratio of the sheer of the margin line (corrected as necessary) at the forward or after perpendicular respectively, measured from the horizontal line through the lowest point of the margin line (corrected as necessary), to the draught;

    • [...]

    • (r) the Standard Diagrams of Floodable Lengths, etc. (or Plates) are as set out in section 12 of this Schedule and the Plates referred to are the numbered Diagrams in that section.

    [...]

    12 

    • [...]

    • (e) in order to determine curves of floodable length for any ship the Standard Diagrams should be used; these give floodable lengths (for the two permeabilities 60 per cent and 100 per cent), for a definite standard family of ship forms of differing block coefficients, freeboard ratios and sheer ratios; the floodable lengths obtained are in every case to be set off at right angles to the base line of the floodable length curve; for the two permeabilities mentioned, the curves of floodable length for any vessel of the standard form can be obtained directly from the cross curves given in the Plates, by the method indicated on Plate II; while for any other permeability the appropriate curve may be obtained (including terminal points) as follows:

      [...]

    • [...]

    • (g) if the ship under consideration conforms to standard type, that is to say, if the coefficients (see Specimen 1) agree with those given on Plates XXVI and XXVII for the standard form, the floodable length curve determined as above will hold good for the ship; if, however, there are differences in these respects, the curve obtained as above should be modified as follows:

    [...]

    where a and a1 are the area coefficients of the mean water planes of the standard form and the new form respectively and ß and ß1 are the sectional area coefficients of the standard form and the new form respectively at MP and M1P1; the sign to be used in the last factor of the above expressions will be + when the centre of flotation of the mean water plane of the new form is before, and - when it is abaft, that of the standard form for sections forward of the centre of flotation, and the opposite sign for sections abaft the centre of flotation; this work may be conveniently arranged as in Specimen 3;

    [...]

    • (h) the coefficients required for a new ship may be conveniently recorded as indicated in Specimen 1, while the similar information for standard form is given on Plates XXVI and XXVII;

    [...]

    • (j) the curves of permissible length are obtained from the curve of floodable length by using the appropriate factor of subdivision and it will be noted that these curves will not extend at the ends of the terminal lines; they can, however, be drawn in when required with sufficient accuracy, by means of the construction shown in Fig. 2; make A B = 2 A D, and B C = 4 D E, A being the lowest point of the curve of permissible length, and A B horizontal; then a fair curve may be drawn through A E C to meet the terminal line as shown in the diagram.

    [...]

    (1) Required Factor: F = 0.50 (or as determined by the formula, whichever is the less in the case of ships exceeding 137.2 m in length)

    [...]

    [...]

    [...]

    As corrected. I have carefully checked the Builders calculations and am satisfied that the particulars shown on this Form are correct.

    [...]


  2. Hull Construction Regulations - C.R.C., c. 1431 (Section 12)
    Regulations Respecting the Construction of Hulls of Steamships
    •  (1) Every ship shall be so constructed as to provide sufficient intact stability in all service conditions to enable the ship to withstand the final flooding of any one of the main compartments into which the ship is subdivided in accordance with the provisions of section 9; if two of the main compartments, being adjacent to each other, are separated by a bulkhead that is stepped, the intact stability shall be adequate to withstand the final flooding of those compartments; if the ship’s factor of subdivision is 0.5 or less, the intact stability shall be adequate to withstand the final flooding of any two of the main compartments that are adjacent to each other.

    • [...]

    • (3) Every ship shall be so constructed as to keep unsymmetrical flooding when the ship is in a damaged condition at the minimum consistent with efficient arrangements; if cross-flooding fittings are provided in any such ship, the fittings and the maximum heel of the ship before equalization shall be such as will not endanger the safety of the ship.

    • (4) Where the margin line may become submerged during the flooding assumed for the purposes of the calculation referred to in Schedule II, the construction of the ship shall be such as will enable the master of the ship to ensure

      • (a) that the maximum angle of heel during any stage of such flooding will not be such as will endanger the safety of the ship; and

    • (5) In every ship the owner shall provide a document for the use of the master of the ship containing information as to the use of any cross-flooding fittings provided in the ship.

    • (6) In every ship the owner shall provide a document for the use of the master of the ship containing

      • [...]

      • (b) information as to the conditions of stability on which the calculations of heel have been based, together with the information that excessive heeling may result if the ship sustains damage when in a less favourable condition.


  3. Hull Construction Regulations - C.R.C., c. 1431 (Section 11)
    Regulations Respecting the Construction of Hulls of Steamships
    •  (1) Every ship of 50 m in length or more shall be fitted with a watertight double bottom that

      • (a) in ships of no less than 50 m but less than 61 m in length, extends at least from the forward end of the machinery space to the collision bulkhead, or as near to that bulkhead as is practicable;

      • (b) in ships of no less than 61 m but less than 76 m in length, extends at least from the forward end of the machinery space to the collision bulkhead and from the aft end of the machinery space to the afterpeak bulkhead, or as near to those bulkheads as is practicable; and

      • (c) in ships of 76 m or more in length, extends at least from the collision bulkhead to the afterpeak bulkhead, or as near to those bulkheads as is practicable.

    • [...]

    • (2) When a double bottom is required by this section to be fitted in a ship, the inner bottom shall be continued out to the ship’s sides in such a manner as to protect the bottom to the turn of the bilge; the inner bottom shall be deemed to be adequate for this purpose if the line of intersection of the outer edge of the margin plate with the bilge plating is not lower at any point than a horizontal plane passing through the point of intersection with the frame line amidships of a transverse diagonal line inclined at 25 degrees to the base line and cutting it at a point one half of the ship’s moulded breadth from the middle line.

    [...]


  4. Hull Construction Regulations - C.R.C., c. 1431 (Section 93)
    Regulations Respecting the Construction of Hulls of Steamships
    •  (1) In passenger launches in excess of 15.25 m in length the propelling machinery shall be separated from the other spaces by a bulkhead or casing; such bulkhead or casing shall be of watertight construction in way of bilges and so constructed above the bilge as to serve as an efficient firebreak; the propelling machinery shall, when located in an open cockpit, be covered by a covering or casing so constructed as to serve as an efficient firebreak.

    • [...]

    • (3) Where gasoline is used as fuel, the outlet ventilation duct from the machinery space shall be fitted with an exhaust fan; the electric motor for the exhaust fan shall be situated outside the machinery space and outside the ventilation duct but, where this is not practicable, an explosion proof motor may be fitted within the machinery space but not within the ventilation duct; in any case, the switch for operating the exhaust fan shall be located outside the machinery space; a suitable notice shall be displayed at the main engine controls indicating that the main engine shall not be started until the exhaust fan has operated for a sufficient period to ensure that the machinery space has been cleared of any accumulation of flammable or explosive vapour; generally the fan shall be operated for at least five minutes before starting the main engine.

    [...]


  5. Hull Construction Regulations - C.R.C., c. 1431 (Section 86)
    Regulations Respecting the Construction of Hulls of Steamships
    • [...]

    • (3) The height of the rails shall be taken as the distance measured from the top of the uppermost rail to the top of the deck at a point vertically below the inner edge of the rail, or, if the deck has a waterway, to the top of the deck plank next to the waterway.

    • [...]

    • (7) In the case of ships that carry vehicles on the open deck, suitable chains, cables or other barriers shall be installed at the ends of the vehicle runways; in addition, suitable gates, rails or other devices shall be installed as a continuation of the regularly required rails.

    • (8) In ships of all classes suitable covers, guards or rails shall be installed in way of all exposed and dangerous places such as gears, machinery, etc.

    • (9) In ships of all classes, regardless of the ship’s tonnage, the requirements for bulwark freeing ports as set out in the Load Line Rules shall apply; where the length of a well exceeds seven-tenths of the length of the ship as defined in the Load Line Rules, the scale of freeing port areas may be reduced by 25 per cent.

    [...]



Date modified: